p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.72C24, C24.148C23, C22.131C25, C42.114C23, C4.902+ (1+4), C22.142+ (1+4), (D42)⋊21C2, C4⋊Q8⋊44C22, D4⋊5D4⋊33C2, D4⋊6D4⋊36C2, Q8⋊6D4⋊26C2, (C4×D4)⋊65C22, (C4×Q8)⋊62C22, C4⋊D4⋊92C22, C23⋊3D4⋊13C2, C4⋊C4.319C23, C4⋊1D4⋊25C22, (C2×C4).121C24, (C23×C4)⋊52C22, C22⋊Q8⋊49C22, C22≀C2⋊15C22, (C2×D4).323C23, C4.4D4⋊40C22, (C22×D4)⋊45C22, (C2×Q8).464C23, C42.C2⋊24C22, C22.54C24⋊8C2, C42⋊2C2⋊18C22, C22.29C24⋊30C2, C42⋊C2⋊59C22, C22.19C24⋊44C2, C22.32C24⋊18C2, C22⋊C4.115C23, (C22×C4).391C23, C22.45C24⋊18C2, C2.60(C2×2+ (1+4)), C2.49(C2.C25), C22.56C24⋊7C2, C22.D4⋊20C22, C22.36C24⋊29C2, C22.46C24⋊32C2, C22.31C24⋊23C2, C22.47C24⋊31C2, C22.34C24⋊20C2, C22.49C24⋊20C2, (C2×C4⋊D4)⋊75C2, (C2×C4⋊C4)⋊89C22, (C2×C4○D4)⋊48C22, (C2×C22⋊C4)⋊61C22, SmallGroup(128,2274)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 1028 in 580 conjugacy classes, 382 normal (122 characteristic)
C1, C2 [×3], C2 [×12], C4 [×2], C4 [×19], C22, C22 [×2], C22 [×44], C2×C4 [×10], C2×C4 [×10], C2×C4 [×29], D4 [×47], Q8 [×5], C23 [×5], C23 [×6], C23 [×18], C42 [×2], C42 [×6], C22⋊C4 [×10], C22⋊C4 [×38], C4⋊C4 [×10], C4⋊C4 [×18], C22×C4 [×8], C22×C4 [×14], C22×C4 [×2], C2×D4 [×10], C2×D4 [×30], C2×D4 [×12], C2×Q8 [×2], C2×Q8 [×2], C4○D4 [×10], C24, C24 [×4], C2×C22⋊C4 [×6], C2×C4⋊C4 [×2], C42⋊C2 [×3], C42⋊C2 [×4], C4×D4 [×7], C4×D4 [×8], C4×Q8, C22≀C2 [×2], C22≀C2 [×14], C4⋊D4 [×11], C4⋊D4 [×28], C22⋊Q8 [×5], C22⋊Q8 [×6], C22.D4 [×2], C22.D4 [×20], C4.4D4, C4.4D4 [×8], C42.C2, C42.C2 [×2], C42⋊2C2 [×6], C4⋊1D4, C4⋊1D4 [×4], C4⋊Q8, C23×C4, C22×D4 [×2], C22×D4 [×4], C2×C4○D4 [×3], C2×C4○D4 [×2], C2×C4⋊D4, C22.19C24 [×2], C23⋊3D4 [×2], C22.29C24, C22.29C24 [×2], C22.31C24, C22.32C24 [×2], C22.34C24, C22.34C24 [×2], C22.36C24, D42, D4⋊5D4 [×2], D4⋊5D4 [×2], D4⋊6D4, Q8⋊6D4, C22.45C24 [×2], C22.46C24, C22.47C24, C22.49C24, C22.54C24 [×2], C22.56C24 [×2], C22.131C25
Quotients:
C1, C2 [×31], C22 [×155], C23 [×155], C24 [×31], 2+ (1+4) [×4], C25, C2×2+ (1+4) [×2], C2.C25, C22.131C25
Generators and relations
G = < a,b,c,d,e,f,g | a2=b2=d2=e2=1, c2=f2=g2=a, ab=ba, dcd=gcg-1=ac=ca, fdf-1=ad=da, ae=ea, af=fa, ag=ga, ece=fcf-1=bc=cb, ede=bd=db, be=eb, bf=fb, bg=gb, dg=gd, ef=fe, eg=ge, fg=gf >
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 30)(2 31)(3 32)(4 29)(5 18)(6 19)(7 20)(8 17)(9 23)(10 24)(11 21)(12 22)(13 25)(14 26)(15 27)(16 28)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 5)(2 8)(3 7)(4 6)(9 25)(10 28)(11 27)(12 26)(13 23)(14 22)(15 21)(16 24)(17 31)(18 30)(19 29)(20 32)
(1 12)(2 23)(3 10)(4 21)(5 14)(6 27)(7 16)(8 25)(9 31)(11 29)(13 17)(15 19)(18 26)(20 28)(22 30)(24 32)
(1 7 3 5)(2 17 4 19)(6 31 8 29)(9 25 11 27)(10 14 12 16)(13 21 15 23)(18 30 20 32)(22 28 24 26)
(1 15 3 13)(2 14 4 16)(5 21 7 23)(6 24 8 22)(9 18 11 20)(10 17 12 19)(25 30 27 32)(26 29 28 31)
G:=sub<Sym(32)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,30)(2,31)(3,32)(4,29)(5,18)(6,19)(7,20)(8,17)(9,23)(10,24)(11,21)(12,22)(13,25)(14,26)(15,27)(16,28), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,5)(2,8)(3,7)(4,6)(9,25)(10,28)(11,27)(12,26)(13,23)(14,22)(15,21)(16,24)(17,31)(18,30)(19,29)(20,32), (1,12)(2,23)(3,10)(4,21)(5,14)(6,27)(7,16)(8,25)(9,31)(11,29)(13,17)(15,19)(18,26)(20,28)(22,30)(24,32), (1,7,3,5)(2,17,4,19)(6,31,8,29)(9,25,11,27)(10,14,12,16)(13,21,15,23)(18,30,20,32)(22,28,24,26), (1,15,3,13)(2,14,4,16)(5,21,7,23)(6,24,8,22)(9,18,11,20)(10,17,12,19)(25,30,27,32)(26,29,28,31)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,30)(2,31)(3,32)(4,29)(5,18)(6,19)(7,20)(8,17)(9,23)(10,24)(11,21)(12,22)(13,25)(14,26)(15,27)(16,28), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,5)(2,8)(3,7)(4,6)(9,25)(10,28)(11,27)(12,26)(13,23)(14,22)(15,21)(16,24)(17,31)(18,30)(19,29)(20,32), (1,12)(2,23)(3,10)(4,21)(5,14)(6,27)(7,16)(8,25)(9,31)(11,29)(13,17)(15,19)(18,26)(20,28)(22,30)(24,32), (1,7,3,5)(2,17,4,19)(6,31,8,29)(9,25,11,27)(10,14,12,16)(13,21,15,23)(18,30,20,32)(22,28,24,26), (1,15,3,13)(2,14,4,16)(5,21,7,23)(6,24,8,22)(9,18,11,20)(10,17,12,19)(25,30,27,32)(26,29,28,31) );
G=PermutationGroup([(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,30),(2,31),(3,32),(4,29),(5,18),(6,19),(7,20),(8,17),(9,23),(10,24),(11,21),(12,22),(13,25),(14,26),(15,27),(16,28)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,5),(2,8),(3,7),(4,6),(9,25),(10,28),(11,27),(12,26),(13,23),(14,22),(15,21),(16,24),(17,31),(18,30),(19,29),(20,32)], [(1,12),(2,23),(3,10),(4,21),(5,14),(6,27),(7,16),(8,25),(9,31),(11,29),(13,17),(15,19),(18,26),(20,28),(22,30),(24,32)], [(1,7,3,5),(2,17,4,19),(6,31,8,29),(9,25,11,27),(10,14,12,16),(13,21,15,23),(18,30,20,32),(22,28,24,26)], [(1,15,3,13),(2,14,4,16),(5,21,7,23),(6,24,8,22),(9,18,11,20),(10,17,12,19),(25,30,27,32),(26,29,28,31)])
Matrix representation ►G ⊆ GL8(ℤ)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | -1 | 2 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 |
0 | 0 | 0 | 0 | -2 | 2 | 1 | -2 |
0 | 0 | 0 | 0 | -2 | 1 | 1 | -2 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 |
0 | 0 | 0 | 0 | 2 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 2 | -1 | 1 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | -2 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 2 | -1 | 2 |
0 | 0 | 0 | 0 | -1 | 2 | -1 | 1 |
G:=sub<GL(8,Integers())| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,-2,-2,0,0,0,0,0,0,2,1,0,0,0,0,-1,-1,1,1,0,0,0,0,2,1,-2,-2],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,-1,1,1,0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,2,2,0,0,0,0,0,0,0,-1,0,0,0,0,-1,-1,1,1,0,0,0,0,0,1,0,0],[-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,1,0,-1,0,0,0,0,-2,-1,2,2,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,2,1] >;
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | ··· | 2O | 4A | 4B | 4C | 4D | 4E | ··· | 4V |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | ··· | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | 2+ (1+4) | 2+ (1+4) | C2.C25 |
kernel | C22.131C25 | C2×C4⋊D4 | C22.19C24 | C23⋊3D4 | C22.29C24 | C22.31C24 | C22.32C24 | C22.34C24 | C22.36C24 | D42 | D4⋊5D4 | D4⋊6D4 | Q8⋊6D4 | C22.45C24 | C22.46C24 | C22.47C24 | C22.49C24 | C22.54C24 | C22.56C24 | C4 | C22 | C2 |
# reps | 1 | 1 | 2 | 2 | 3 | 1 | 2 | 3 | 1 | 1 | 4 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
In GAP, Magma, Sage, TeX
C_2^2._{131}C_2^5
% in TeX
G:=Group("C2^2.131C2^5");
// GroupNames label
G:=SmallGroup(128,2274);
// by ID
G=gap.SmallGroup(128,2274);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,224,477,1430,723,2019,570,136,1684,102]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=d^2=e^2=1,c^2=f^2=g^2=a,a*b=b*a,d*c*d=g*c*g^-1=a*c=c*a,f*d*f^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e=f*c*f^-1=b*c=c*b,e*d*e=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations